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African wild dog

Endangered 
one of Africa’s most 
endangered large carnivores

Vulnerable to climate
through unknown 
mechanisms

Keystone species 
playing crucial roles in the 
ecosystem
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2010 - 2024
• GPS collar data

30 + deployed collars

• Environmental data
habitat, temperature, precipitation

• Accelerometer data
largely unused

What we have
Background
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• Predator movements
> 30 predators over 15 years

• Environmental data
habitat type, rainfall, temperature
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Different behaviours have 

different data signatures

But you need to learn 

what these look like

1. Label acceleration data with known behaviours

2. Repeat

3. Train AI models



Collected data for training models

Audio recordings
> 900 hours

Video footage
> 200 hours



1. Class imbalance

Four big challenges
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1. Class imbalance

2. Quantifying uncertainty

3. Distribution shift 

4. Temporal context

Four big challenges



Data Preparation & Class Imbalance
Class Rebalancing



X Axis Accelerometry Signal
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...

Moving

Fixed duration acceleration-behavior pairs

Moving

Moving

Moving

12 seconds windows



Accelerometry Data Windows and Behavior Labels

Feeding RestingMoving Running Vigilant

23,368 pairs of matched signal windows and behavior labels



Class Imbalance

Behavior Video labels duration [h] Audio labels duration [h]

Feeding 1.32 0.20

Moving 1.67 0.39

Resting 51.57 0.00

Running 0.09 0.48

Vigilant 16.45 0.05



Empirical 
class distribution

Uniform 
class distribution

Rebalanced 
class distribution

𝜃 =rebalancing parameter

𝜃1 − 𝜃 =+

Sleeping

Standing

Sitting

Running

Feeding



Class Rebalancing, 𝜃 = 0.7
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Class Rebalancing, 𝜃 = 0.0

No rebalancing



𝜃1 − 𝜃 =+

Sleeping

Standing

Sitting

Running

Feeding

Complete rebalancing

Class Rebalancing, 𝜃 = 1.0



Model Architecture & Uncertainty Quantification



Standing

Sitting

Running

Walking

Eating

Input:
Tri-axial

acceleration

Input 
signal
3 × 𝑇

Conv output
𝐶out × 𝑇

Pooling 
output

𝐶out × 𝑇/2

Pooling output
(2𝑚−1𝐶out)
× (𝑇/2𝑚)

Flattened 
layer

Output:
Multi-label 

scores

Model Architecture

Scores of success 
of each class



A set of predictions that provably contains the true class label with a pre-specified probability, for example 90%.

𝑃(𝑌 ∈ |𝑋 = ) ≥ 0.9
Label CovariatePrediction 

set

We use regularized adaptive prediction sets (RAPS) calibrated on a held-out set. 

Uncertainty Quantification - Prediction Sets



Uncertainty Quantification - Example

Feeding
0.3343

Vigilant
0.2422

Moving
0.4034

Resting
0.3484

Vigilant
0.1839

Running
0.4016

Vigilant
0.3094

Resting
0.2110



Distribution Shift
Testing Model Robustness



Distribution Shift

Train Test

≠ ≠

Model performance can decline due to distribution shift, where he characteristics of 

the training data differ those of dataset used for model implementation.



Potential Distribution Shift in Data
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Temporal Context
Temporally Smoothed Classification



Behavior classification on signal can be abrupt…



Temporally Smoothed Classification

Moving scores
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Temporally Smoothed Classification



Results



Evaluation Metrics
for most likely predictions…

F1 score = 
2 Precision × Recall

2 Precision + Recall



Evaluation Metrics
for prediction sets…

Coverage:

Proportion of instances 

for which correct label is 

included in the prediction 

set.

More is better.

Average RAPS Size:

Average size of the 

reduction sets. Ranges 

between one to number 

of classes.

Less is better.



Tuning the rebalancing parameter 𝜃



No-split experiment - most likely predictions

𝜃 = 0.0 𝜃 = 0.7



All experiments - all evaluation metrics



Future Directions



Lying downRunning

Stationary

Eating

Integrate other data modalities
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Integrate other data modalities

Extracted features from 
acceleration data



Integrate other data modalities

Extracted features from 
acceleration data

Extracted features from 
audio data



Botswana 
Predator Conservation
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GPS collar data
30 + deployed collars

Environmental data
habitat, temperature, precipitation

Accelerometer data
largely unused

Audio recordings
> 900 hours

Species demographics
survival, morphometrics

Herbivore data
bi-annual surveys

Briana Abrahms, 
abrahms@uw.edu 

Kasim Rafiq, 
rafiqk@uw.edu



Earthsounds @ Apple TV



Paper Code
Medha Agarwal, medhaaga@uw.edu
Kasim Rafiq, kasim.rafiq@hotmail.co.uk
Ronak Mehta, ronakdm@uw.edu
Briana Abrahms, abrahms@uw.edu, 
Zaid Harchaoui, zaid@uw.edu

Thank you

Collaborators: Leigh West, Marie-Pier 
Poulin, Tico McNutt, John Neelo, Peter 
Brack, Malebogo Oratile, Alex Dibnah 
and others.   
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