Revealing the Hidden Lives of Cryptic Carnivores with Machine Learning and AI

Abrahms Lab, Dept of Biology

Harchaoui Lab, Dept of Statistics

Ecosystem Sentinels

Botswana Predator Conservation

Medha Agarwal

Kasim Rafiq

Ronak Mehta

Briana Abrahms

Zaid Harchaoui

CONSERVATION

Mate acquisition

Disease transmission

Ecosystem services

SURVIVAL & FITNESS

ECOSYSTEM DYNAMICS

Mate acquisition

ENVIRONMENT &

CLIMATE

MOVEMENT

Disease transmission

Ecosystem services

SURVIVAL & FITNESS

ECOSYSTEM DYNAMICS

HUNGER

Endangered

one of Africa's most endangered large carnivores

Keystone species playing crucial roles in the ecosystem

Vulnerable to climate through unknown mechanisms How does climate impact the movement of predators, and how is this mediated by hunger?

How does climate impact the movement of predators, and how is this mediated by hunger?

Google Earth Data SIO, NOAA, U.S. Navy

Background What we have

2010 - 2024

- GPS collar data 30 + deployed collars
- Environmental data habitat, temperature, precipitation
- Accelerometer data largely unused

٠

- Predator movements> 30 predators over 15 years
- Environmental data habitat type, rainfall, temperature

NTERACTIONS WITH ENVIRONMENTS SURVIVAL &

ECOSYSTEM DYNAMICS

Estimate energy intake

Different behaviours have different data signatures

But you need to learn what these look like

1. Label acceleration data with known behaviours

2. Repeat

3. Train AI models

Different behaviours have different data signatures

But you need to learn what these look like

Collected data for training models

Audio recordings > 900 hours Video footage > 200 hours

1. Class imbalance

1. Class imbalance

2. Quantifying uncertainty

Class imbalance
Quantifying uncertainty

3. Distribution shift

1. Class imbalance

2. Quantifying uncertainty

3. Distribution shift

4. Temporal context

Data Preparation & Class Imbalance Class Rebalancing

X Axis Accelerometry Signal

Fixed duration acceleration-behavior pairs

12 seconds windows

Accelerometry Data Windows and Behavior Labels

23,368 pairs of matched signal windows and behavior labels

Class Imbalance

Behavior	Video labels duration [h]	Audio labels duration [h]	
Feeding	1.32	0.20	
Moving	1.67	0.39	
Resting	51.57	0.00	
Running	0.09	0.48	
Vigilant	16.45	0.05	

 θ =rebalancing parameter

Class Rebalancing, $\theta=0.7$

Partial rebalancing

Class Rebalancing, $\theta = 0.0$

No rebalancing

Class Rebalancing, $\theta = 1.0$

Complete rebalancing

Model Architecture & Uncertainty Quantification

Model Architecture

Uncertainty Quantification - Prediction Sets

A set of predictions that provably contains the true class label with a pre-specified probability, for example 90%.

We use regularized adaptive prediction sets (RAPS) calibrated on a held-out set.

Uncertainty Quantification - Example

Distribution Shift Testing Model Robustness

Distribution Shift

Model performance can decline due to distribution shift, where he characteristics of the training data differ those of dataset used for model implementation.

Potential Distribution Shift in Data

Temporal Context Temporally Smoothed Classification

Behavior classification on signal can be abrupt...

Smoothed moving scores

Smoothed moving scores

Smoothed moving scores

Results

Evaluation Metrics *for most likely predictions...*

Evaluation Metrics for prediction sets...

Coverage:

Proportion of instances for which correct label is included in the prediction set.

More is better.

Average RAPS Size:

Average size of the reduction sets. Ranges between one to number of classes.

Less is better.

Tuning the rebalancing parameter heta

No-split experiment - most likely predictions

All experiments - all evaluation metrics

Evaluation Metric	No split	Interdog	Interyear	InterAMPM
Train set size	14978	13104	9528	13712
Validation set size	3745	3277	2382	3429
Test set size	4645	6987	11458	6227
Precision (val, test)	(0.93, 0.92)	(0.94, 0.86)	(0.92, 0.84)	(0.91, 0.88)
Recall (val, test)	(0.92, 0.92)	(0.93,0.90)	(0.89, 0.84)	$(0.90. \ 0.88)$
F1 score (val, test)	(0.92, 0.92)	(0.93,0.88)	(0.91, 0.83)	(0.90, 0.88)
Accuracy (val, test)	(0.93, 0.93)	(0.93,0.91)	(0.89, 0.80)	(0.87,0.85)
Top-1 coverage (val, test)	(0.88, 0.86)	(0.89,0.79)	(0.90, 0.80)	(0.88, 0.83)
RAPS coverage (val, test)	(0.95, 0.93)	(0.95,0.89)	(0.92, 0.83)	(0.94,0.90)
RAPS avg size (val, test)	(1.32, 1.32)	(1.21,1.30)	(1.05, 1.06)	(1.21,1.23)

Future Directions

Botswana Predator Conservation

GPS collar data

30 + deployed collars

Environmental data

habitat, temperature, precipitation

Accelerometer data largely unused

Audio recordings > 900 hours

Species demographics survival, morphometrics

Herbivore data

bi-annual surveys

Briana Abrahms, abrahms@uw.edu

Kasim Rafiq, rafiqk@uw.edu

Earthsounds @ Apple TV

Thank you

Medha Agarwal, medhaaga@uw.edu Kasim Rafiq, kasim.rafiq@hotmail.co.uk Ronak Mehta, ronakdm@uw.edu Briana Abrahms, abrahms@uw.edu, Zaid Harchaoui, zaid@uw.edu

Collaborators: Leigh West, Marie-Pier Poulin, Tico McNutt, John Neelo, Peter Brack, Malebogo Oratile, Alex Dibnah and others.

Washington Research FOUNDATION

W

cosystem Sentinels

ALFRED P. SLOAN FOUNDATION