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Transformer Self-Attention Mechanism
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Transformer Self-Attention Mechanism
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Previous Work on Understanding Self-Attention

 [VBC20] formulated the self-attention mechanism as a non-linear transformation on
probability measures.

« [GLPR23] derive the limiting geometry of particles undergoing self-attention updates for
different configurations of query, key, and value matrices.

- [GLPR24] derived the Lipschitz coefficient of self-attention mechanism.

« [CAP24] extended the analysis of Lipschitz coefficient to masked self-attention within a

mean-field framework.

* We derive the mean-field limit of Sinkformers, proposed by [SABP22]. w
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Sinkformer [SABP22] Self-Attention Mechanism
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Sinkformer Self-Attention Mechanism
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« Initialize K° = exp(C) .

Update K/*! = Ng(K?) if¢is even,
. NA(K?) ifisodd.

« Ny is row normalization and N is column normalization.




Evolution of interacting particles under doubly-stochastic self-attention
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Infinite particles
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Infinite particles
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pktl = (Tpk> p*  where Ti(x) =x+ Jk°°(x, y) Wy dp*(y)
"

. Initialize k" = exp(c) where c(x, y) = (WQx)T(WKy).

K (x, 0o
— (x);)k() if £ is even, ZF Tt = ot +/k (", y) Wyy dp* (y)
X,
Update K t1(x, y) = 4 Yy
Kk’ (x, y) e
if £ is odd .
| 1K) dpta) w




Normalized and time-discretized picture




Normalized and time-discretized picture

+ The doubly-stochastic self-attention update is
M =gk /koo(:v’“,y) Wyy dp* (y)
- Viewing layers as time variable, the above update can be viewed as time discretization of the

dynamic

%x(w _ / K (2(0), y) Wy d/f@)

density of x(7) at time ¢

- The ODE can be solved using forward Euler to obtain time-discretized self-attention updates

#((k + 1)e) = w(ke) + ¢ / E (2 (ke), y) Wy dpre (1)

W




Normalized and time-discretized picture

- The doubly-stochastic self-attention update is
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Normalized and time-discretized picture

- The doubly-stochastic self-attention update is
gt = ok 4 /k:oc(:l;k, y) Wyy dp® ()
- Viewing layers as time variable, the above update can be viewed as time discretization of the

dynamic

%Jj(f) — / k> (x(t),y) Wyy d/ir,(iy)

density of x(7) at time ¢

+ The ODE can be solved using forward Euler to obtain time-discretized self-attention updates

£((k+ 1)e) = x(ke) + ¢ / B (2(ke), y) Wy dpie(3)
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Normalized continuous-time dynamics

+ The ODE can be solved using forward Euler to obtain time-discretized self-attention updates
sl(k + 1)e) = alke) + = [ K% (a(ke),) Wey dpue()

- Here x(¢) will diverge to +co. Following [SABP22], we rescale tokens as z(¢) = e """ x(¢)

and introduce the bandwidth parameter £ > 0 (that scales Wg Wy and Wy, by ¢) to get the
update

2((k+ 1)e) = z(ke) + [/ klgo(z(ks), y) Wyydpre(y) — sz(ks)]
v

Sinkhorn(c/e)
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* For finite particles
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Normalized continuous-time dynamics

2((k+ 1)e) = z(ke) + [/ k2 (z(ke),y) Wyy dpre (y) — sz(ks)]




Evolution of interacting particles under normalized self-attention
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Key and Query Value Limit geometry
Wi Wi >0 Wy =1, Vertices of a polytope

WoWi >0 A(Wy) >0 Hyperplane

WyWy > 0 Wy is paranormal  Polytope X subspace

WyWg > 0 W, =—1, Tokens diverge to
infinity
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Evolution of interacting particles under self-attention
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Evolution of interacting particles under self-attention

Key and Query Value Limit geometry
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Motivating Question
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. Concretely, p**1 = (Tpk8> pk,
T

T () =x+ < [k;’"(x, Y) Wyy dpi(y) = va>

. When WyW,, = I,and Wy, = — I, then T (x) = 2] — [kgO(x, y)ydpX(y)

What happens ife — 0+ ? w




Motivating Question

Under assumption W;WQ = Wg Wy = — Wy, = I, the Sinkformer self-attention

update is

Barycentric projection




Define p,(t) = pXfort € [ke, (k + 1)e).

n+l

Pe

What happens ife — 0+ 7?

Is there a curve (p(),t > 0)

such that (p.(7),1 > 0)

converges uniformly it as

e — 0?

W




Claim

[SABP22] hypothesize that scheme (pé‘, k > O)converges uniformly to a heat flow.
Consider,

Self-attention flow pe(t) = Plg for t € ke, (k + 1)5)]

Heat flow Catp(ta T) = Agp(t, xD

Concretely, let (p(t),t > O) be the heat flow. Then, for a fixed T > 0,

(%SE&% W (p2 (1), p(t)) = o) w




IOI;—H = (21 — Bp,e)# pE
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Understanding 55, . via
Entropy-regularized Optimal Tranport
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Notation

Coupling of Measures

Given u,v € @(Rd), we say y € P(RIx RY) is a coupling (transport plan) between ¢ and v,
denoted by y € I1(u, v), if for all measurable A, B C R

y(A X RY) = u(A) and y(R? x B) = v(B)

Transport Map

A measurable function 7 : R? — R? s a push forward from u to v, denoted by
Tuu = v, if for all measurable A C RY,

v(A) = u(T~'(A))

T, =vifandonlyif (Id, T).u € I1(u, v). w




Entropy regularized optimal transport

Entropy-regularized optimal transport problem

inf (/ |z — y||*dy + eH (v|u x y)) H(a|p) =J log(a/p)da
~yell(w,v) Rd xRd R4

The argmin of the above problem, denoted by 7, is the Schrodinger bridge (SB) from p to v.

Define the barycentric projection as the function

Buve(z) =E, [V|X =2]| &Y~z

W




Self-attention update via same marginal Schrodinger bridges

In this work, we assume u = v.

Let T, be the Schroédinger bridge from p to itself and

Bp76(x) - Eﬂ'p,z—: [Y|X - x]

Recall, the doubly-stochastic self-attention update

.- Id
pEt =20 = Bye)y pt = (Id —€ (Bp—)) pt
#

Schrédinger Bridge
between two N(0,1)
random variables with
e =0.01

W

€

Want to calculate precisely the deviation of BP from identity.




Three main results




Result 1: Same Marginal Schrodinger Bridge is close to law of Langevin diffusion

Theorem [AHMP24, Theorem 1]
Let p = e~ 8 be a probability density on R4 with enough regularity such that there

1
is a strong solution to the Langevin SDE d X, = 5 V g(X,)dt + dB, with initial

distribution X, ~ p. Let £, . = Law(X, X,), then

172
1

H{,,|n,.)+Hz,.|?,,) < Ce <I(p) -+ [ I(pf)dt) .
0

In particular, the right hand side is 0(&2). I(a) = [ | Vlog a||*da.
R4




Heat Flow: Particle Approach

PDE (Evolution of Density)

8t/0(t7 ZC) — Axp(ta £U)

Particle Picture

Let X, ~ po and consider the ODE
1
X, =v == EVIOgP(I)

Then, (x)sp = p(1)

Flow of Measures

Particle Trajectories

7

x(x) =

1
5 Vlog p,(x)
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Result 2: One Step Approximation - Intuition

From Result 1 (7, , & 4 ».e)s intuitively,

Byo(w) ~ By, [VIX = a] m 2~ SVg(a) =2+ 5 Vlog p(a)

p,E
Bp,a(x) — T VIOg p(x)
€ - 2

Matches explicit Euler approximation from particle picture

—

Particle Picture Takeaway: Can access

Let X, ~ py and consider the ODE score function via entropic
OT objects, which can be

1
x, =v,=——=Vlogp(r)
Lo 2 estimated from samples!

Then, (x)spo = p(1)




Result 2: One Step Approximation

Explicit Euler Update SB Update

Stp) = (Id—%Vlogp)#p Sle(P) = (21d _Bp,s)# P

Theorem [AHMP24, Theorem 2]

. 1 1 1 _
lglfol EWQ (SBe (p)ase (p)) =0




Result 3: Uniform Convergence

Theorem 3 [AHMP 24]

The explicit Euler scheme converges to the heat equation uniformly from a starting measure
Po € P(RY) (satisfying some conditions), that is

lim sup Wy (S£(po), p(ke)) =0
&30 ke[N.]

As a corollary,

lim sup W (SBE(po), p(ke)) =0
ed0 ke[N,]




Simulations




Mixture of Gaussians
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Mixture of Gaussians
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Thank you for your attention!




The Team

Garrett Mulcahy Zaid Harchaoui Soumik Pal
Mathematics, University of Washington Statistics, University of Washington Mathematics, University of Washington




References

+ [AHMP24] Agarwal, Medha, et al. "lterated Schrédinger bridge approximation to Wasserstein Gradient Flows." arXiv
preprint arXiv:2406.10823 (2024).

+ [CAP24] Valerie Castin, Pierre Ablin, and Gabriel Peyré. How smooth is attention? In ICML 2024, 2024.

+ [Cut13] 3] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

+ [GLPR24] Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. The emergence of clusters in self-
attention dynamics. Advances in Neural Information Processing Systems, 36, 2024.

+ [SABP22] Michael E. Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyr’e. Sinkformers: Transformers with doubly
stochastic attention. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, Proceedings of The 25th
International Conference on Atrtificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pages 3515-3530. PMLR, 28-30 Mar 2022.

+ [VBC20] James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A mathematical theory of attention.
preprint arXiv:2007.02876, 2020.




