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Previous Work on Understanding Self-Attention

 [VBC20] formulated the self-attention mechanism as a non-linear transformation on
probability measures.

« [GLPR24] derived the Lipschitz coefficient of self-attention mechanism.

- [CAP24] extended the analysis of Lipschitz coefficient to masked self-attention within a
mean-field framework.

* We derive the mean-field limit of Sinkformers, proposed by [SABP22].
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Sinkformer [SABP22] Self-Attention Mechanism
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Sinkformer Self-Attention Mechanism
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« Initialize K° = exp(C) .

Update K/*! = {NR(KK) if £ is even,

N(K%) if£isodd.

« Ny is row normalization and N is column normalization.




Finite particles
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Infinite particles
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Infinite particles
t=2 t=3 t=
a.Ii-I

P = (1) o where 7= [k W )
#

. Initialize k° = exp(c) where c(x,y) = (WQx)T(WKy).

K (x,y) . )
T if £ is even,
Update k“*1(x, y) = ’
° Ky) if £ is odd
| Tk (. y) dp(x) '




What is the continuous-time counterpart of
this discrete-time process?
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Temperature Parameter

What happens if € — 04?2
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Temperature Parameter

. Concretely, p*1 = (T ke) pk
T

€ p €’

T () = jkz’(x, ) Wy dpk(y)

- The Sinkhorn kernel is k.° = Sinkhorn(c/¢).

What happens ife — 0+ ? w




Define p,(t) = pXfort € [ke, (k + 1)e).

n+l

Pe

What happens ife — 0+ 7?

Is there a curve (p(),t > 0)

such that (p.(7),1 > 0)

converges uniformly it as

e — 0?
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Let’s dive deeper...

Under assumption W;WQ = WgWK =—-W, =1

the infinite particles Sinkformer self-attention update is

pEtt = (21—/k§o(w,~)dp§(fv)) pt
"

— (2‘[ - BP’é’aé‘)# ’OI;
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Barycentric projection




Claim

[SABP22] hypothesize that scheme (pé‘, k > O)converges uniformly to a heat flow.
Consider,

Self-attention flow pe(t) = Plg for t € ke, (k + 1)5)]

Heat flow Catp(ta T) = Agp(t, xD

Concretely, let (p(t),t > O) be the heat flow. Then, for a fixed T > 0,

(%SE&% W (p2 (1), p(t)) = o) w




Understanding 55, . via
Entropy-regularized Optimal Tranport

pEtt = (21 - Bp,e)# pE

W




Introduction to (Entropy Regularized) Optimal Transport
/]J\\ >

Monge Mass Transport Problem w
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Notation

Coupling of Measures

Given u,v € @(Rd), we say y € P(RIx RY) is a coupling (transport plan) between ¢ and v,
denoted by y € I1(u, v), if for all measurable A, B C R

y(A X RY) = u(A) and y(R? x B) = v(B)

Transport Map

A measurable function 7 : R? — R? s a push forward from u to v, denoted by
Tuu = v, if for all measurable A C RY,

v(A) = u(T~'(A))

T, =vifandonlyif (Id, T).u € I1(u, v). w




Optimal Transport

The optimal transport problem is then given by

W3(p,v) = inf / |z — yl|*dy
yell(p,v) J RdxRd

Brenier’s Theorem gives the structure of optimal coupling. Under moderate assumptions:

where T'is the unique gradient of a convex function.

W




Entropic Regularization

Problem: Unable to efficiently calculate OT cost and OT maps.
Solution: Regularization by relative entropy (KL Divergence)

Entropy-regularized optimal transport problem

inf (/ |z — y||*dy + eH (v|u x y)) H(a|p) =J log(a/p)da
yEl(p,v) R4 x R4 R4

The argmin of the above problem, denoted by 7, is the Schrodinger bridge (SB) from p to v.

Define the barycentric projection as the function

Buue(z) :=E; [Y]|X = x] w
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Sinkhorn Algorithm

Compute Schrodinger Bridges in near linear time [Cut13] via alternating projections

Hoe @

I(p, 0)
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Self-attention update via same marginal Schrodinger bridges

In this work, we assume u = v.

Let T, be the Schroédinger bridge from p to itself and

Bp76(x) - Eﬂ'p,z—: [Y|X - x]

Recall,

.- Id
pEt =20 = Bye)y pt = (Id —€ (Bp—)) pt
#

Schrédinger Bridge
between two N(0,1)
random variables with
e =0.01

W

€

Want to calculate precisely the deviation of BP from identity.




Three main results




Result 1: Same Marginal Schrodinger Bridge is close to law of Langevin diffusion

Theorem [AHMP24, Theorem 1]
Let p = e~ 8 be a probability density on R4 with enough regularity such that there

1
is a strong solution to the Langevin SDE d X, = 5 V g(X,)dt + dB, with initial

distribution X, ~ p. Let £, . = Law(X, X,), then

172
1

H{,,|n,.)+Hz,.|?,,) < Ce <I(p) -+ [ I(pf)dt) .
0

In particular, the right hand side is 0(&2). I(a) = [ | Vlog a||*da.
R4




Heat Flow: Particle Approach

PDE (Evolution of Density)

8t/0(t7 ZC) — Axp(ta £U)

Particle Picture

Let X, ~ po and consider the ODE
1
X, =v == EVIOgP(I)

Then, (x)sp = p(1)

Flow of Measures

Particle Trajectories

7

x(x) =

1
5 Vlog p,(x)
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Result 2: One Step Approximation

Based on intuition from Result 1, 7, . = Z, ,,

Bp,s(x) ~ Eg

pyE

Y| X =x]~x— ng(a:) =+ %Vlogp(:v)
“— \

Takeaway: Can access
score function via entropic

Let X, ~ p, and consider the ODE OT objects, which can be
estimated from samples!

Matches explicit Euler approximation from particle picture

Particle Picture

1
Y=y == EVIOgP(t)

Then, (x)ypy = p(t) w




Result 2: One Step Approximation

Explicit Euler Update SB Update

Stp) = (Id—%Vlogp)#p Sle(P) = (21d _Bp,s)# P

Theorem [AHMP24, Theorem 2]

. 1 1 1 _
lglfol EWQ (SBe (p)ase (p)) =0




Result 3: Uniform Convergence

Define the SB and explicit Euler schemes for approximating (p(t), t e [O,T]). Let N, = |Ne™!],
then for any k € [N,]

Explicit Euler Update SB Update

SBI(p) = SBZ(SBL(p)) Set(p) = S1(SE(p))

Theorem 3 [AHMP 24]

The explicit Euler scheme converges to the heat equation uniformly from a starting measure
Po € P(RY) (satisfying some conditions), that is

lim sup Wa (SE(po), p(ke)) =0
€40 ke[N,]




Result 3: Uniform Convergence

Theorem 3 [AHMP 24]

The explicit Euler scheme converges to the heat equation uniformly from a starting measure
Po € P(RY) (satisfying some conditions), that is

lim sup Wy (S£(po), p(ke)) =0
&30 ke[N.]

As a corollary,

lim sup W (SBE(po), p(ke)) =0
ed0 ke[N,]




Simulations




Mixture of Gaussians

po = 0.5NM(=2,1) + 0.56M(2,1), € =0.01
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Mixture of Gaussians
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Thank you!
Questions?
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