

WASHINGTON

Iterated Schrödinger Bridge Approximation to Wasserstein Gradient Flows

Si *k* In fact, if $(\rho_t, t \in [0,T])$ is heat equation starting from ρ_0 , $\lim_{\varepsilon \to 0} \sup_{k \in [T/\varepsilon]} \mathbb{W}_2^2(\rho_k^\varepsilon, \rho_{k\varepsilon}) = 0$

Medha Agarwal, Zaid Harchaoui, Garrett Mulcahy, Soumik Pal

Background

Iterative Scheme

Consider absolutely continuous curve $(\rho_t, t \in [0,T])$ satisfying $\partial_t \rho_t + \nabla \cdot (v_t \, \rho_t) = 0$ where $v_t = v(\rho_t)$ is the velocity field. An example is gradient flow minimizing a functional $\mathscr{F}:\mathscr{P}(\mathbb{R}^d)\to\mathbb{R}.$

Uniform Convergence

 $\mathbb{W}_2(\rho_{k\varepsilon},SB_{\varepsilon}^k(\rho)) \leq \mathbb{W}_2(\rho_{k\varepsilon},SB_{\varepsilon}^1(\rho_{(k-1)\varepsilon})) + \mathbb{W}_2(SB_{\varepsilon}^1(\rho_{(k-1)\varepsilon}),SB_{\varepsilon}^k(\rho))$

$$
x_i \leftarrow \sum_{j=1}^n K_{ij}^{\infty} W_V x_j
$$
, where K^{∞} = Sinkhorn (C) and $C_{ij} = (W_Q x_i)^T (W_K x_j)$
\n
$$
Value Matrix
$$

Key Matrix

Under $(W_O)^TW_K = -W_V = I_d$, the infinite particles counterpart with bandwidth/temperature ε is

$$
\rho \leftarrow \left(T_{\rho,\varepsilon}\right)_\# \rho \text{ where } T_{\rho,\varepsilon}(x) = 2x - \int k_{\varepsilon}^\infty(x,y) \ y \ d\rho(y) \text{ and } k_{\varepsilon} = \text{Sinkhorn}(c/\varepsilon)
$$

Iteratively, with $\rho_0^{\varepsilon} = \rho_0$,

 $\mathsf{Sequence}\left(\rho_k^\varepsilon, k\in[T/\varepsilon]\right)$ $\rho_k^{\varepsilon} = \left(T_{\rho_{k-1}^{\varepsilon},\varepsilon}\right)_{\#}\rho_{k-1}^{\varepsilon}$ $\mathsf{Piece\text{-}wise\ continuous\ curve}\left(\rho_{t}^{\varepsilon}, t\in[0,T]\right)$ $\rho_t^{\varepsilon} = \rho_{\lfloor t/\varepsilon \rfloor}^{\varepsilon}, t \in [0, T]$

As $\varepsilon \to 0+$, what is the limit of the curve $(\rho^\varepsilon_t, t\in [0,T])$? Answer: Heat equation!

$$
\lim_{\varepsilon \to 0} \sup_{k \in [T/\varepsilon]} \mathbb{W}_2^2(\rho_k^{\varepsilon}, \rho_{k\varepsilon}) = 0
$$

Setting

Consider the entropy regularized optimal transport (EOT) problem between measures *μ* and *ν*

Key Contribution: (1) Under suitable conditions, self-attention iterations converge to the heat flow as $\varepsilon\to0$. (2) We write the iterated scheme for a general functional $\mathscr F.$ (3) We prove the uniform convergence of the scheme to the gradient flow of KL divergence with respect to a log-concave density. What about any gradient flow? Can we such approximations for them like self-attention for heat flow?

$$
\min_{\pi \in \Pi(\mu,\nu)} \left\{ ||x - y||^2 d\pi + \varepsilon \mathsf{KL}(\pi || \mu \otimes \nu) \right\}
$$

$$
\mathscr{B}_{\rho,\varepsilon}(x) = \mathbb{E}_{\pi_{\rho,\varepsilon}}[Y \mid X = x] = \int y \; k^{\infty}(x,y) \; d\rho(y).
$$

Example 2 argmin
$$
\pi_{\mu,\nu,\varepsilon}
$$
 is the Schrödinger bridge

Consider same marginal setting, i.e. $\mu = \nu = \rho$ with Schrödinger bridge $\pi_{\rho, \varepsilon}$, then

Therefore, for infinite particles, the self-attention update is

 \implies

$$
\rho_k^{\varepsilon} = \left(T_{\rho_{k-1}^{\varepsilon},\varepsilon}\right)_\# \rho_{k-1}^{\varepsilon} = \left(2I_d - \mathcal{B}_{\rho,\varepsilon}\right)_\# \rho_{k-1}^{\varepsilon}
$$

Claim:
$$
(\rho_k^{\varepsilon}, k \in [T/\varepsilon])
$$
 is a discrete approximate to the heat flow.

Wasserstein gradient flow is characterized by the continuity equation $\partial_t \rho_t + \nabla \cdot (v_t \, \rho_t) = 0$ where $\psi_t: \mathbb{R}^d \to \mathbb{R}^d$ is the velocity field. For heat flow, $\psi_t = 0.5$ $\nabla \log \rho_t$.

 $(\rho, SB^1_{\varepsilon}(\rho), ..., SB^N_{\varepsilon}(\rho)), N_{\varepsilon} = [T/\varepsilon].$ Schrödinger Bridge Scheme

For Gaussian marginals, $C(\varepsilon) = \mathcal{O}(\varepsilon^2)$

 $\lim_{\varepsilon \to 0} \varepsilon^{-1} \mathbb{W}_2(S^1_{\varepsilon}(\rho), SB^1_{\varepsilon}(\rho)) = 0$

If the surrogate measure σ_{ε} satisfies a set of regularity conditions, then there exists a constant $K>0$ such $\mathcal{C}_\mathcal{B}^1(\mathcal{S}_\mathcal{B}^1(\rho),SB^1_\mathcal{E}(\rho)) < K\mathcal{E}C(\mathcal{E}).$ Under assumptions on surrogate measure $\sigma_\mathcal{E},C(\mathcal{E})=o(1).$ **Theorem 2 (Single Step Convergence)**

One discrete time approximation is analogous to explicit Euler scheme

$$
S^1_\varepsilon(\rho) =
$$

 $S^1_\varepsilon(\rho) = \left(id + \varepsilon v\right)_\# \rho$ with $v = v(\rho)$. Explicit Euler (EE) Step Let $v = \nabla \psi$ for a smooth function ψ and there exists $\theta_\epsilon \in \mathbb{R} \backslash \{0\}$ s.t. $\Lambda(\epsilon) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \mathbb{R}^{d-1}$ $\exp(2\theta_{\epsilon}\psi) < +\infty$.

Define the **surrogate measure** $\sigma_{\epsilon} := \Lambda(\epsilon)^{-1} \text{exp}(2\,\theta_{\epsilon}\,\psi)$ and the one-step update

Main contribution: Under suitable conditions, $2x - B_{\rho,\varepsilon} \approx x - \frac{\varepsilon}{2}$ 2 ∇ log $\rho(x)$

One-step Approximation

$$
SB^1_\epsilon(\rho) :=
$$

Iterative Schemes

Explicit Euler Scheme
$\left(\rho, S^1_{\varepsilon}(\rho), ..., S^{N_{\varepsilon}}_{\varepsilon}(\rho)\right), N_{\varepsilon} = [T/\varepsilon].$

Remark: For heat equation (gradient flow of entropy functional), $\sigma_{\varepsilon}=\rho$ and $\theta_{\varepsilon}=-1.$ For Fokker Planck equation (gradient flow of KL divergence with respect to ν), $\sigma_e = (\rho/\nu)^{-\theta_e}$ where the sign of θ_e depends on the integrability of σ_e .

Convergence

Let
$$
\rho = e^{-g} \in \mathcal{P}(\mathbb{R}^d)
$$
 with enough regularity such that there is strong solution to the Langevin SDE
\n
$$
dX_t = -\frac{1}{2} \nabla g(X_t) + dB_t
$$
 with $X_0 \sim \rho$. Let $\ell_{\rho,\varepsilon} = \text{Law}(X_1, X_\varepsilon)$, then $H(\ell_{\rho,\varepsilon} | \pi_{\rho,\varepsilon}) + H(\pi_{\rho,\varepsilon} | \ell_{\rho,\varepsilon}) \leq \varepsilon^2 C(\varepsilon)$.

Theorem 1 (Tight Approximation of Same Marginal Schrödinger Bridge)

One-step Convergence

Remark: (1) The one step convergence relies on the close approximation of the same-marginal Schrödinger bridge by the Langevin diffusion.

 $\theta_{\epsilon}^{1}(\rho) := ((1 - \theta_{\epsilon}^{-1}) id + \theta_{\epsilon}^{-1})$

Schrödinger Bridge (SB) Step

Experiments