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Background

For initial d-dimensional particles/tokens (xi, ..., X,) ~ p,, the Transformer update is

n T
X; < Z K:*Wyx;, where K = Sinkhorn(C) and Cj; = <WQxl-> (WKxj)
j=1
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Under (WQ)TWK = — Wy, = 1, the infinite particles counterpart with bandwidth/temperature ¢ is

p <« <Tp,8> p where T, (x) = 2x — [kgm(x,y) y dp(y) and k, = Sinkhorn(c/¢)
#

lteratively, with p; = p,

Sequence (p,f,k € [T/G]) Piece-wise continuous curve (pf,t € [O,T])

—
Pr =Pyt €10.T]

E &
P = \Tpe e #pk—l

As ¢ — 0+, what is the limit of the curve (p/, t € [0,7'])? Answer: Heat equation!

lim sup W3(pf, pi,) =0

In fact, if (p,, ¢ € [0,T]) is heat equation starting from p,,, e=0 Ll Tie]
ell/e

Setting

Consider the entropy regularized optimal transport (EOT) problem between measures ¢ and v

min {|lx = y|’dr + eKL(x | |4 ® 1)}

relln) argmin iz, , . is the Schrdédinger bridge

Consider same marginal setting, i.e. 4 = v = p with Schrédinger bridge 7, then

B, x) =, [V|X=1x]= Jy k®(x,y) dp(y).

Therefore, for infinite particles, the self-attention update is

Pr = Tﬂ/f—pe)# plf—l = (21d - ‘%jpx)# plf—l

Main contribution: Under

Ilterative Scheme

Consider absolutely continuous curve (p,, t € [0,T']) satisfying d,p, + V - (v, p,) = 0 where v, = v(p,) is
the velocity field. An example is gradient flow minimizing a functional & : (R%) — R.

One-step Approximation

One discrete time approximation is analogous to explicit Euler scheme

Sgl(p) = (id + sv)# p with v = v(p). Explicit Euler (EE) Step

Let v = Vi for a smooth function y and there exists 6, € R\ {0} s.t. A(e) = J exp(20.y) < + ©.
Rd

Define the surrogate measure ¢, := A(e)_lexp(Z 0. ) and the one-step update

SBl(p) == (1 -6, id+ 607" B, Jup Schrodinger Bridge (SB) Step

Iterative Schemes

Explicit Euler Scheme

(05100, o820 ), N, = [TVl

Schrédinger Bridge Scheme
(0. SBp). ... SBY(p) ), N, = [TVel.

Remark: For heat equation (gradient flow of entropy functional), 6. = p and 6, = — 1. For Fokker Planck equation (gradient flow
of KL divergence with respect to 1), 6, = (p/u)‘ge where the sign of 6. depends on the integrability of o,.

Convergence

Letp =e 8 € @(Rd) with enough regularity such that there is strong solution to the Langevin SDE
|
dX, = — 5 Vg(X,) +dB,with X, ~ p. Let £, . = Law(X, X,), then H(Z, . |

ps€

'4

For Gaussian marginals, C(g) = 0O(&?)

One-step Convergence

suitable conditions, = | Claim: (p;,k € |T/e]) is a discrete approximate to the heat flow.

€
2x-%,, ~x— EVlogp(x)

Wasserstein gradient flow is characterized by the continuity equation d,p, + V - (v, p,) = 0 where
v, : RY — RYis the velocity field. For heat flow, v, = — 0.5 Vlog p,.

What about any gradient flow? Can we such approximations for them like self-attention for heat flow?
Key Contribution: (1) Under suitable conditions, self-attention iterations converge to the heat flow as £¢ — 0. (2) We write the

iterated scheme for a general functional &. (3) We prove the uniform convergence of the scheme to the gradient flow of KL
divergence with respect to a log-concave density.

If the surrogate measure o, satisfies a set of regularity conditions, then there exists a constant K > 0 such
that W, (Sgl(p), SBgl(p)) < KeC(¢). Under assumptions on surrogate measure o, C(¢) = o(1).

lim &~'Wy(S.(p). SBL(p)) = 0
e—0

Remark: (1) The one step convergence relies on the close approximation of the same-marginal Schrédinger bridge by the
Langevin diffusion.
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Uniform Convergence

[ W, (Ppes SBf (P) < W, (ppes SBel (p(k—l)g)) + Wz(SBgl (p(k—l)e)> SB.f () ]

Even though, we show that SB one step is
o (&) approximation of the EE step, it is Pins e

important to ensure that the errors do not

culminate by more than el
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Experiments

Heat flow with ¢ = 0.01 and py = 0.54°(=2,1) + 0.54°(2,1)

)+ H(z, |£,,) < C(e).
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