

Pretrained Transformers are Heat Flows

Medha Agarwal*, Garrett Mulcahy†, Soumik Pal†, Zaid Harchaoui*

For initial d -dimensional particles/tokens $(x_1, \ldots, x_n) \sim \rho_0$, the Transformer update is

Key Matrix

Under $(W_Q)^{\top}W_K = -W_V = I_d$, the infinite particles counterpart with bandwidth/temperature ε and $k_{\varepsilon} = \text{Sinkhorn}(c/\varepsilon)$ is

$$\rho \leftarrow \left(T_{\rho,\varepsilon}\right)_{\#} \rho \text{ where } T_{\rho,\varepsilon}(x) = 2x - \int k_{\varepsilon}^{\infty}(x,y) \ y \ d\rho(y)$$
with $\rho^{\varepsilon} = \rho$

Iteratively, with $\rho_0^{\varepsilon} = \rho_0$,

Sequence
$$\left(\rho_{k}^{\varepsilon}, k \in [T/\varepsilon]\right)$$

 $\rho_{k}^{\varepsilon} = \left(T_{\rho_{k-1}^{\varepsilon}, \varepsilon}\right)_{\#} \rho_{k-1}^{\varepsilon}$
Continuous curve $\left(\rho_{t}^{\varepsilon}, t \in [0,T]\right)$
 $\rho_{t}^{\varepsilon} = \rho_{\lfloor t/\varepsilon \rfloor}^{\varepsilon}, t \in [0,T]$

As $\varepsilon \to 0+$, what is the limit of the curve $(\rho_t^{\varepsilon}, t \in [0,T])$? Answer: Heat equation!

In fact, if $(\rho_t, t \in [0,T])$ is heat equation starting from ρ_0 ,

$$\lim_{\varepsilon \to 0} \sup_{k \in [T/\varepsilon]} \mathbb{W}_2^2(\rho_k^{\varepsilon}, \rho_{k\varepsilon}) = 0$$

Background

Entropy-regularized optimal transport (EOT)

Consider the EOT problem between measures μ and ν

$$\min_{\pi \in \Pi(\mu,\nu)} \left\{ \frac{1}{2} \|x - y\|^2 d\pi + \varepsilon \mathsf{KL}(\pi \mid \mid \mu \otimes \nu) \right\}$$

The argmin $\pi_{\mu,\nu,\varepsilon}$ of EOT is the Schrödinger bridge. Consider same marginal setting $\mu = \nu = \rho$ with Schrödinger bridge $\pi_{\rho,\varepsilon}$. Then if $(X, Y) \sim \pi_{\rho,\varepsilon}$ and $\pi_{\rho,\varepsilon}$ of f

admits the disintegration $\pi_{\rho,\varepsilon} = \left| \pi_{\rho,\varepsilon,x} d\rho(x) \right|$, define barycentric projection

 $\int y \ k^{\infty}(x, y) \ d\rho(y) = \int y d\pi_{\rho, \varepsilon, x}(y) =: \mathscr{B}_{\rho, \varepsilon}(x)$

Therefore, for infinite particles, the self-attention update for measures is

$$\rho_{k}^{\varepsilon} = \left(T_{\rho_{k-1}^{\varepsilon},\varepsilon}\right)_{\#} \rho_{k-1}^{\varepsilon} = \left(2I_{d} - \mathscr{B}_{\rho,\varepsilon}\right)_{\#} \rho_{k-1}^{\varepsilon}$$

Heat Equation

General Wasserstein gradient flows characterized by the continuity equation

$$\partial_t \rho_t + \nabla_x \cdot \left(v_t \rho_t \right) = 0$$

where $v_t : \mathbb{R}^d \to \mathbb{R}^d$ is the velocity field. Heat equation $(\rho_t, t \ge 0)$ is $\partial_t \rho_t = \frac{1}{2} \Delta \rho_t$, therefore, $v_t = -\frac{1}{2} \nabla \log \rho_t$.

Main contribution: Under suitable conditions,

$$2x - \mathscr{B}_{\rho,\varepsilon} \approx x - \frac{\varepsilon}{2} \nabla_x \log \rho(x)$$

And in general, $\frac{1}{\varepsilon}(\mathscr{B}_{\rho,\varepsilon}-I)$ approximates the score function $\frac{1}{2}\nabla_x \log \rho$.

Convergence

Claim: Iterations of self-attention mechanism $(\rho_k^{\varepsilon}, k \in \lfloor T/\varepsilon \rfloor)$ is a discretely approximate the heat flow starting from ρ_0 .

Define $S_{\varepsilon}^{1}(\rho) = (id - 0.5\varepsilon \nabla_{x} \log \rho)_{\#} \rho$ to be the explicit Euler step (EE) and $SB_{\varepsilon}^{1}(\rho) := (2I_{d} - \mathscr{B}_{\sigma_{\varepsilon},\varepsilon})_{\#}\rho$ be the Schrödinger bridge (SB) step.

One-step Convergence

Proposition 1 (Single Step Convergence)

If the surrogate measure σ_{ε} satisfies a set of regularity conditions, then there exists a constant K > 0 such that $\mathbb{W}_2\left(S^1_{\varepsilon}(\rho), SB^1_{\varepsilon}(\rho)\right) < K\varepsilon C(\varepsilon)$. Under

For Gaussian marginals,
$$C(\varepsilon) = \mathcal{O}(\varepsilon^2)$$

 $\lim_{\rho} \varepsilon^{-1} \mathbb{W}_2(S^1_{\varepsilon}(\rho), SB^1_{\varepsilon}(\rho)) = 0$

Uniform Convergence

Even though, we show that SB one step is $o(\varepsilon)$ approximation of the EE step, it is important to ensure that the errors do not accumulate.

Theorem (Uniform Convergence)

Under some regularity assumptions on the iterates $(S_{\varepsilon}^{k}, k \ge \lfloor T/\varepsilon \rfloor)$ and $(SB_{\varepsilon}^{k}, k \in \lfloor T/\varepsilon \rfloor)$, the sequence $(SB_{\varepsilon}^{k}, k \in \lfloor T/\varepsilon \rfloor)$ is a first order approximation of heat flow $(\rho_{t}, t \in [0,T])$.

